

(a)

a

استكشاف النماذج الأسية **Exploring Exponential Models**

المجموعة B تمارين موضوعية

في التمارين (1-4)، ظلّل (a)إذا كانت العبارة صحيحة و (b)إذا كانت العبارة خاطئة.

(1) الدالة $y = 3(2)^x$ تمثل تضاؤلًا أسيًا.

 $y = 3(2)^x$ الدالة الأسية

a = 3, b = 2, 2 > 1

a = 2, b = 3, 3 > 1

الدلة تمثل نموا أسيا وليس تضاؤلا أسيا

(2) الدالة $y = 2\left(\frac{1}{3}\right)^{-x}$ الدالة $y = 2\left(\frac{1}{3}\right)^{-x}$

 $y = 2(\frac{1}{3})^{-x} = 2(3)^x$ like $y = 2(\frac{1}{3})^{-x} = 2(3)^x$

الدلة تمثل نموا أسبا

2 هو $y = \frac{1}{3}(2)^{2x}$ هو 2

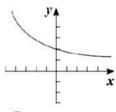
 $y = \frac{1}{3}(2)^{2x} = \frac{1}{3}(4)^{x}$ Let $y = \frac{1}{3}(2)^{2x}$

 $a = \frac{1}{3}$, b = 4

(b)

 $y=b^x$ إذا كان بيان الدالة $y=b^x$ كما في الشكل المقابل فإن $y=b^x$

السبب:


الدالة الأسية التي تمثيلها البياني بهذا الشكل يكون b > 1 لانها ثمل نمو اأسيا

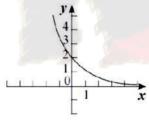
في التمارين (8-5)، ظلَّل رمز الدائرة الدال على الإجابة الصحيحة.

(5) عامل النمو للدالة $y = ((\frac{1}{3})^{-2})^x$ هو:

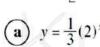
 $\left(\mathbf{a}\right)\frac{1}{3}$ \bigcirc b $\frac{1}{9}$ (c) 3

 $y = \left(\left(\frac{1}{3}\right)^{-2}\right)^{x} = ((3)^{2})^{x} = (9)^{x}$

(6) ليكن بيان الدالة: $y = 2b^x$ كما في الشكل المقابل: فإن b يمكن أن تساوى:


- $\left(\mathbf{a}\right)$ -2
- **b** 0
- (d) 2

الدالة الأسية التي تمثيلها البياني بهذا الشكل يكون = b لانها ثمل تضاؤ لا أسيا $0 < \frac{1}{2} < 1$ 0 < b < 1


- (7) الدالة الأسية $y = ab^x$ تنمذج التزايد السكاني، إذا كان معدل التزايد السكاني في مدينة ما هو $y = ab^x$ عامل النمو يساوي:
- (a) 0.025
- (b) 1.25
- 1.025
- (d) 3.5

- I = 2.5 % = 0.025
- أي أن
- معدل التغير (I) = %2,5 معدل التغير

b = 1 + 0.025 = 1.025

(8) أي من الدوال الأسية التالية يمكن أن يمثلها الرسم البياني المقابل:

- **c** $y = -3(2)^x$

 $y = 2\left(\frac{1}{2}\right)^{0} = 2$ بالتعویض عن x = 0 منحنی الدالة یمر بالنقطة

(b)

الدوال الأسية وتمثيلها بيانيًا Exponential Functions and their Graphs

المجموعة B تمارين موضوعية

في التمارين (5-1)، ظلَّل a إذا كانت العبارة صحيحة، و b إذا كانت العبارة خاطئة.

(1) جميع الدوال الأسية على الصورة: $y = ab^x \ a \neq 0 \ , \ b > 0, \ b \neq 1$ متقاطعة.

هذا العبارة صحيحة مهما اختلفت قيمة b ، وثبت قيمة الـ a

 $y = 2^x$ بيان الدالة $y = -2^x$ هو انعكاس في محور السينات لبيان الدالة $y = 2^x$ السبب:

 $y = -b^{x}$ لأن بيان الدالة $y = -b^{x}$ ينتج من أنعكاس الدالة $y = -b^{x}$

(3) $y = -(3)^{-x}$ المدالة $y = -(3)^{-x}$ هو انعكاس في محور الصادات لبيان الدالة $y = -(3)^{-x}$ المديد و

لان بيان $b^{-x} = b^{-x}$ ينتج من أنعكاس الدالة $y = -b^{-x}$ في محور محور الصادات

 $y = 3(5)^x$ بيان الدالة $y = 3(5)^{x-2}$ هو انسحاب لبيان الدالة $y = 3(5)^x$ بمقدار وحدتين جهة اليمين.

السبب: بيان y = 3 (5) السبب y = 3 (5) السحاب لبيان الدالة y = 3 (5) السحاب لبيان الدالة y = 3 الأن y = 3

(5) بيان الدالة x = 3(2) يقطع جزءًا من محور الصادات قدره 3.

٠ بيان (2) = y = 3 يقطع جزء ا من محور الصادات قدره و وحدات

 $y = 3 (2)^0 \implies y = 3 (1) = 3$ لأنه عند x = 0 تكون x = 0

في البنود (12-6)، ظلّل رمز الدائرة الدال على الإجابة الصحيحة.

(6) $t = 3 \left(\frac{1}{2}\right)^{x+1} + 5$ لتكن 5 + 3 فإن دالة المرجع لها يمكن أن تكون:

(a) $y = 3(2)^x$ (b) $y = 3(2)^{-x}$ (c) $y = 3(\frac{1}{2})^{x+1}$ (d) $y = (\frac{1}{2})^x$

 $y = 3 \left(\frac{1}{2}\right)^x$ الدالة $y = 3 (2)^{-x}$ الدالة

 38_{Page}

(7) باستخدام بیان الدالة
$$y = \frac{1}{3}(4)^x$$
 الدالة بیان الدالة.

(a)
$$y = 3(4)^x$$

(b)
$$y = 3(4)^{-1}$$

(b)
$$y = 3(4)^{-x}$$
 (c) $y = \frac{1}{3}(2)^{2x} + 1$ **(d)** $y = \frac{1}{3}(2)^{3x}$

d
$$y = \frac{1}{3}(2)^{3x}$$

: الدالة
$$y = \frac{1}{3}(2)^{2x} + 1$$
 الدالة الدالة

$$y = \frac{1}{3} (2^2)^x + 1 = \frac{1}{3} (4)^x + 1$$

$$y = 8\left(\frac{1}{2}\right)^{(\alpha+2)x} + 3$$
 التي تجعل بيان الدالة 3 + 3 أفقيًا هي: (8) قيمة α قيمة α

$$\bigcirc$$
 a -3

$$(\mathbf{d})$$
 0

السبب:

$$y = 3 + 8 = 11$$

y = 11 الدالة يمثل خطأ مستقيما يمر النقطة (0, 11) وعند الأنسحاب يمينا أو يسارا

$$g(x) = \frac{1}{2} f(x) = \frac{1}{2} f(x)$$

(a)
$$3(5)^x + 1$$

$$(c) -3(5)^x + 1$$
 $(d) 3(5)^{-x} + 1$

$$(c)$$
 $-3(5)^x + 1$

d
$$3(5)^{-x}$$
 +

 $g(x) = 3(5)^{-x}$ الدالة $f(x) = 3(5)^{x}$ هو صورة بيان الدالة

بالإتعكاس في محور الصادات ، وعند سحب الدالة f(x) وحدة واحدة إلى الأسفل يجب سحب

الدالة (x) ل وحدة و احدة إلى الأسفل لكي نحافظ على الأنعكاس •

بانسحاب:
$$y = \frac{1}{2}(5)^x$$
 بانسخدام بیان الدالة $y = \frac{1}{2}(5)^{x+2} - 3$ بانسحاب:

(11) معادلة الدالة الأسية التي على الصورة $y = a(b)^x$ حيث الأساس يساوي 0.6 ويمر رسمها البياني بالنقطة (2 , 1.8) هي:

(a)
$$y = 1.8(2)^x$$

(b)
$$y = 0.2(1.8)^x$$
 (c) $y = 2(0.6)^x$ d $y = 5(0.6)^x$

$$(c)$$
 $y = 2(0.6)^x$

d
$$y = 5(0.6)^x$$

$$y = a(b)^x$$
 $x = 2$, $y = 1.8$, $b = 0.6$ بالتعویض عن $a = 1.8 \div 0.36 = 5$ $y = 5(0.6)^x$

الدوال اللوغاريتمية وتمثيلها بيانيًّا Logarithmic Functions and their Graphs

المجموعة B تمارين موضوعية

$$x = \log y$$
 فإن $y = 3^x$ اذا كانت $y = 3^x$

السبب:

3 وليس أساس $x = \log y$ ولكن $x = \log_3 y$ فإن $y = 3^x$

(2)
$$y = 2^{-x}$$
 فإن $\log_2(-y) = x$

السبب:

$$y = 2^{-x}$$
 فأن الصورة الأسية هي $y = 2^{-x}$ وليست $x = \log_2(-y)$

ع الله عانت
$$2x = \log_2 5$$
 فإن $4^x = 5$ فإن (3)

السبب:

$$2x = \log_2 5$$
 فإن $2^{2x} = 5$ وبالتالي $2^{2x} = 5$

(4) مجال الدالة
$$f(x) = \log(x^2)$$
 هو $f(x) = \log(x^2)$

السبب:

$$\mathbb{R} - \{0\}$$
 هو $f(x) = \log(x^2)$ مجال الدالة

(5)
$$y = 3^x$$
 لبيان الدالة $y = \log_3 x$ هو انعكاس في المستقيم $y = \log_3 x$ لبيان الدالة $y = \log_3 x$

السبب:

معكوس الدالة
$$y=\log_3 x$$
 نقوم بنبديل تبديل x بال x بال $y=\log_3 x$ معكوس الدالة $y=\log_3 x$ أي أن $x=\log_3 y$ هي معكوس للدالة $y=\log_3 x$

في التمارين (11-6)، ظلَّل رمز الدائرة الدال على الإجابة الصحيحة.

(6) معكوس الدالة $y = \log_2 x$ هو:

(a)
$$y = \log_x 2$$
 (b) $y = x^2$ (c) $y = 2^x$ (d) $y = \log 2^x$

السبب:

معكوس الدالة
$$y=\log_2 x$$
 نقوم بتبديل y بال. y ثم الحل $y=\log_2 x$ معكوس الدالة $y=\log_2 x$ أي أن $y=2^x$ هي معكوس للدالة $y=\log_2 x$

(b) R+

(c) $(1,\infty)$

(c) $[1,\infty)$

R/{1}

السبب:

 $\mathbb{R}-\{1\}=\mathbf{g}$ مجال الدالة |x-1|>0 هو $g(x)=\log|x-1|$ مجال الدالة

هو: $y = \log(x^2 + 1)$ هو: (8) مجال الدالة

 (\mathbf{d}) $(1,\infty)$

R

(a) R

 $\mathbb{R} = f$ مجال الدالة $x^2 + 1 > 0$ هو $f(x) = \log(x^2 + 1)$ مجال الدالة

باستخدام دالة المرجع $y = \log_5 x$ يمكن تمثيل الدالة:

(a) $y = \log(x-1)-1$

(b) $y = \log_5(5x)$

 $y = \log_5(x-1) - 1$

 $\mathbf{d} \quad y = \log_5(x^2 + 1)$

 $y = \log_5 x$ دالة المرجع $y = \log_5 (x - 1) - 1$ بيان الدالة

(u) k = -1 (u) h = 1

أي أن الأنسحاب لبيان دالة المرجع وحدة جهة اليمين وحدة إلى أسفل

(10) يمكن رسم بيان الدالة $y = \log(x+1) - 2$ معتبرًا دالة المرجع $y = \log x$ بانسحاب:

ه وحدة إلى اليسار ووحدتين الأسفل (b) وحدة إلى اليمين ووحدتين الأسفل

وحدتين إلى اليمين ووحدة لأعلى ﴿ وَحَدَّتِينَ إِلَى اليسارِ وَوَحَدَّةَ لأَعْلَى

 $y = \log_5 x$ بيان الدالة $y = \log_5(x+1) - 2$ دالة المرجع h = -1 (سالب) k = -2 (سالب)

أى أن الأنسحاب لبيان دالة المرجع وحدة جهة اليسار وحدتين إلى أسفل

(11) يعطى الرقم الهيدروجيني (pH) بالعلاقة: $[H^+]$ $[H^+]$ إذا كان تركيز أيون الهيدروجيني $[H^+]$ في السبانخ هو ^{6-10 × 4 فإن الرقم الهيدروجيني للسبانخ هو:}

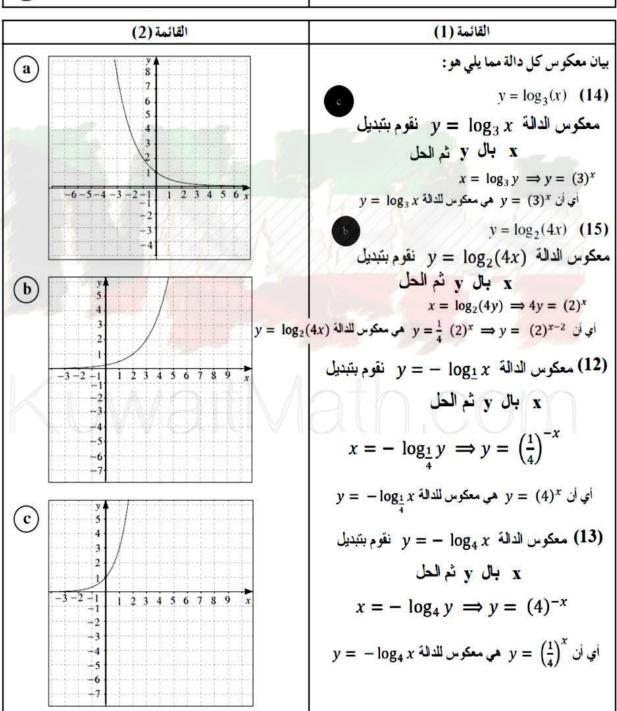
> (c) -5.4 (b) 6.6

d 5.4

(a) -6.6

السبب:

الرقم الهيدوجيني في السبانخ


 $PH = -\log[H^+] \Rightarrow PH = -\log[4 \times 10^{-6}]$ $PH = -\log[0.000004] \implies PH = \log[0.000004]^{-1} \implies PH \approx 5.4$

60

 41_{Page}

في البنود (15-12)، لديك قائمتان اختر من القائمة (2) ما يناسب كل تمرين في القائمة (1) لتحصل على إجابة صحيحة.

القائمة (2)	القائمة (1)
$ \begin{array}{c} \mathbf{a} y = 4^{x} \\ \mathbf{b} y = \left(\frac{-1}{4}\right)^{-x} \\ \mathbf{c} y = \left(\frac{1}{4}\right)^{x} \\ \mathbf{d} y = (-4)^{-x} \end{array} $	معكوس الدالة: $y = -\log_{\frac{1}{4}}x$ (12) $y = -\log_{\frac{1}{4}}x$ (13)

63

خواص اللوغاريتمات Properties of Logarithms

المجموعة B تمارين موضوعية

في التمارين (6-1)، ظلّل a إذا كانت العبارة صحيحة و b إذا كانت العبارة خاطئة.

$$\log(x-1)^2 = 2\log|x-1|$$
 (1)

$$\log(x-1)^2 = 2 \log |x-1|$$
 السبب: من تعریف اللوغاریتم

مجال كلا منهما [1] - ا

$$\log \frac{1}{x^2} = -2\log x, x > 0$$
 (2)

$$\log \frac{1}{x^2} = \log x^{-2} = -2 \log x$$
 أي أن $x > 0$

b
$$\log\left(\frac{\sqrt{m}}{n}\right) = \frac{1}{2}\log m - \log n, \ m > 0, n > 0$$
 (3)

$$\log\left(\frac{\sqrt{m}}{n}\right) = \log\sqrt{m} - \log m = \log m^{\frac{1}{2}} - \log n = \frac{1}{2}\log m - \log m$$

$$\log_2 16 - \log_2 2 = \log_2 8$$
 (4)

$$\log_2 16 - \log_2 2 = \log_2 \left(\frac{16}{2}\right) = \log_2 8$$
 أو بأستخدام الآلة الحاسبة

a
$$\log(x-y) = \frac{\log x}{\log y}, \ x, \ y \in \mathbb{R}^+/\{1\}$$
 (5)

$$\log(x-y) \neq \frac{\log x}{\log y}$$
 , $\log x - \log y = \log \frac{x}{y}$: من خاصية القسمة

$$\log_6 4 + \log_6 9 = 2$$
 (6)

: •

$$\log_6 4 + \log_6 9 = \log_6 (4 \times 9) = \log_6 36 = 2$$
 الآلة الحاسبة

في التمارين (13-7)، ظلَّل رمز الدائرة الدال على الإجابة الصحيحة.

$$2\log_4 8 + \log_5 125 = \log_4(8)^2 + \log_5 5^3$$

$$(ie + 3 + 3 = 6)$$

مع التمنيات بالتوفيق ـ رئيس قسم الرياضيات ـ أ . فرج مبروك فرج ـ ت. 99716213

في التمارين (13-7)، ظلل رمز الدائرة الدال على الإجابة الصحيحة.

(8) إذا كان
$$\log 5 = x$$
, $\log 5 = y$ أذا كان (8)

(a)
$$x+y$$

$$b = 2x + y$$

$$\bigcirc$$
 2y+x

$$(\mathbf{d}) x^2 y$$

$$\log 45 = \log 5 \times 9 = \log 5 \times 3^2 = \log 5 + \log 3^2$$

= $\log 5 + 2 \log 3 = y + 2x$

يساوي:
$$\log_2 x + \log_2 2x + \log_2 \frac{1}{x^2}, x > 0$$
 (9)

$$(c)$$
 x

$$\log_2 x + \log_2 2x + \log_2 \frac{1}{x^2} = \log_2 x \cdot 2x \cdot \frac{1}{x^2} = \log_2 2 = 1$$

$$m+n-1$$
 إذا كان $m+n-1$ إذا كان $m+n-1$ فإن المقدار $m+n-1$ يساوي:

$$m + n - 1 = \log 2 + \log 3 - \log 10 = \log \frac{2 \times 3}{10} = \log 0.6$$

(11) عندما
$$m = 3$$
 , $n = 2$ فإن المقدار الأكبر قيمة فيما يلي هو:

(a)
$$\log n^2 - \log m^3$$

$$\log m^2$$
 –

$$\log m^2 - \log n^2$$
 (c) $3 \log n - 2 \log m$ **(d)** $2 \log m - 3 \log n$

$$(\mathbf{d}) 2 \log m - 3 \log n$$

السبب:

(a)
$$\log n^2 - \log m^3 = \log 2^2 - \log 3^3 = \log \frac{4}{27}$$

(b)
$$\log m^2 - \log n^2 = \log 3^2 - \log 2^2 = \log \frac{9}{4}$$

(C)
$$3\log n - 2\log m = \log 2^3 - \log 3^2 = \log \frac{8}{9}$$

(d)
$$2\log m - 3\log n = \log 3^2 - \log 2^3 = \log \frac{9}{8}$$

(12) مفكوك المقدار
$$\log\left(\sqrt[3]{\frac{8}{x^3}}\right)$$
 هو:

a
$$3\log\frac{8}{x^3}$$

b
$$\frac{1}{3}(\log(8-x^3))$$
 c $\log 2 - \log x$

$$\log 2 - \log 2$$

$$\log\left(\sqrt[3]{\frac{8}{x^3}}\right) = \log\left(\frac{8}{x^3}\right)^{\frac{1}{3}} = \log\left(\frac{2^3}{x^3}\right)^{\frac{1}{3}} = \log\left(\frac{2}{x}\right) = \log 2 - \log x$$

المجموعة B تمارين موضوعية

في التمارين (5-1)، ظلّل (a) إذا كانت العبارة صحيحة و (b) إذا كانت العبارة خاطئة.

a b
$$x = \frac{1}{2}$$
 as $9^x = 3$ at last the second $x = \frac{1}{2}$ and $y = 3$ and $y = 3$ and $y = 3$

$$2 \log x = -1 \implies \log x = -\frac{1}{2} = -0.5$$
 $2 \log x = -1 \implies \log x = -\frac{1}{2} = -0.5$
 $\Rightarrow x = \frac{1}{2}$: السبب

$$x = 10^{-0.5}$$
 الصورة الأسية هو حل المعادلة $x = 10^{-0.5}$ المعادلة $x = 10^{-0.5}$ المعادلة $x = 10^{-0.5}$ المعادلة $x = 10^{-0.5}$ عن $x = 10^{-0.5}$

$$2 \log x = -1 \implies \log x = -\frac{1}{2} = -0.5$$

$$x = 10^{-0.5}$$
 | Image: Image: Note | Imag

$$x = -5$$
 فإن $\log(x+6) = 0$ إذا كان (3)

$$x + 6 = 10^0 = 1$$
 حول إلى الصورة الأسية $\log(x + 6) = 0$

$$x = 1-6 = -5$$

$$\log(-5+6) = \log 1 = 0$$
 $x = -5$ أو بالتعويض عن قيمة $x = -5$

(4)
$$x = \frac{\log 146}{\log 14}$$
 as $14^{9x} = 146$ and $14^{9x} = 146$

(b)

$$\log 14^{9x} = \log 146$$
 بأخذ لو غاريتم الطرفين $14^{9x} = 146$ $9x \log 14 = \log 146 \Rightarrow 9x = \frac{\log 146}{\log 14} \Rightarrow x = \frac{\log 146}{9 \log 14}$

(5)
$$3 \log x - \log 6 + \log 2.4 = 9$$
 على المعادلة $9 = 3 \log x - \log 6 + \log 2.4 = 9$

السبب

$$3\log x - \log 6 + \log 2.4 = 9$$

 $3\log x - \log 6 + \log \frac{24}{10} = 9 \implies 3\log x - \log 6 + \log \frac{4 \times 6}{10} = 9$

$$3\log x - \log 6 + \log 4 + \log 6 - \log 10 = 9$$
 $3\log x + \log 4 = 9 + 1 \Rightarrow \log x^3 = \log 10^{10} - \log 4$
 $\log x^3 = \log \frac{10^{10}}{4} = \log(25 \times 10^8)$
 $x^3 = 25 \times 10^8 \Rightarrow x\sqrt[3]{25 \times 10^8}$
 $x = 5 \times 10^4$
 $\sin x = 100$
 $\sin x$

 $2 \log x = -2 \implies \log x = -1 \implies x = 10^{-1}$

$$(\mathbf{d}) \{-2,-3\}$$

السبب:

$$\log(x^2 + 2) = \log(5x - 4) \implies x^2 + 2 = 5x - 4$$
$$x^2 + 5x - 6 = 0 \implies x = 3, x = 2$$

(11) مجموعة حل المعادلة:
$$\log_2(x^2 - x) = 1$$

$$(a)$$
 $\{-1\}$

 $\log_2(x^2 - x) = 1 \implies \log_2(x^2 - x) = \log_2 2$

$$x^2 - x = 2 \implies x^2 - x - 2 = 0$$

$$x = 2 \in \mathbb{R} - (0,1)$$
 , $x = -1 \in \mathbb{R} - (0,1)$

اهو:
$$\log(x+21) + \log x = 2$$
 هو:

$$(b)$$
 -25, 4

$$\log(x+21) + \log(x) = 2 \implies \log(x(x+21)) = \log 100$$

$$x^2 + 21x = 100 \implies x^2 + 21x = 100 \implies x^2 + 21x - 100 = 0$$

$$x = 4 \in (0, \infty) , x = -25 \notin (0, \infty)$$

(13) يكون
$$x = 3$$
 حالًا للمعادلة.

(a)
$$\log_3(6-x^2) = 1$$
 (b) $\log_x 9 = \frac{2}{3}$

(b)
$$\log_x 9 = \frac{2}{3}$$

(c)
$$\log_3(x^2 + 1) = 2$$
 d $\log_3 x^3 + \log_3 x = 4$

السبب:

$$\log_3 x^3 + \log_3 x = 4 \implies \log_3 x^4 = 4 \implies x^4 = 3^4 \implies x = \pm 3$$

(14) حل المعادلة
$$\log_x 81 - \log_x 81 - \log_x 81$$
 هو:

(a) -3

(b)
$$\frac{1}{3}$$

$$\log_x 81 - \log_x 9 = 2 \implies \log_x \frac{81}{9} = 2 \implies \log_x 9 = 2 \implies 9 = x^2 \implies x = \pm 3$$

(a)

(a)

اللوغاريتم الطبيعي Natural Logarithm

المجموعة B تمارين موضوعية

في التمارين (1-5)، ظلّل a إذا كانت العبارة صحيحة و b إذا كانت العبارة خاطئة.

 $\log_{A}(\ln e^{4}) = 1$ (1)

 $\log_4(\ln e^4) = \log_4(4 \ln e) = \log_4 4 = 1$

(باستخدام الآلة الحاسبة)

4ln8 + ln10 = 4ln80 (2)

السبب:

السبب:

 $4 \ln 8 + \ln 10 = \ln 8^4 \times 10 = \ln 40960$

 $1 \ln 80 = \ln 80^4 = \ln 40960000$

 $4 \ln 8 + \ln 10 \neq 4 \ln 80$

(باستخدام الألة الحاسبة)

 $lne^2 = 2 (3)$

لسبب:

 $\ln e^2 = 2 \ln e = 2$ أو $\ln e^2 = 2 \ln e$)

 e^2 هو lnx = -2 هو (4) حل المعادلة.

 $\ln x = -2 \implies x = e^{-2} \implies x = \frac{1}{e^2} \qquad \text{if} \qquad x = e^2 \implies x = \frac{1}{e^2}$

5ln3 هو $e^{\frac{x}{5}} + 4 = 7$ هو (5) حل المعادلة: 7

السبب:

 48^{Page}

 $e^{\frac{x}{5}} + 4 = 7 \implies e^{\frac{x}{5}} = 3 \implies \ln e^{\frac{x}{5}} = \ln 3 \implies x = 5 \ln 3$ (بالتعویض عن $x = 5 \ln 3$ و استخدام الآلة الحاسبة)

في التمارين (14-6)، ظلَّل رمز الدائرة الدال على الإجابة الصحيحة.

(6) 3 ln 4 - 5 ln 2 على شكل لوغاريتم واحد تكتب:

(a)
$$ln(-18)$$

$$3\ln 4 - 5 \ln 2 = \ln 4^3 - \ln 2^5 = \ln \frac{4^3}{2^5} = \ln 2$$

جرب جميع النواتج (

(أ و استخدام الآلة الحاسبة

 e^{ln10} (7) تساوي:

$$(\mathbf{b}) e^{10}$$

$$(c)$$
 0

$$\bigcirc$$
 $\frac{1}{10}$

$$e^{\ln 10} = 10$$

من خواص اللوغاريتم الطبيعي

(أواستخدام الآلة الحاسبة)

(8) حل المعادلة 8 = (2m + 3) هو:

$$(a)$$
 $e^8 - 3$

$$\frac{e^8-3}{2}$$

$$\mathbf{d}$$
 $\mathbf{e}^4 - 3$

$$\ln(2m+3) = 8 \implies 2m+3 = e^8 \implies 2m = e^8 - 3 \implies m = \frac{e^8 - 3}{2}$$

(9) حل المعادلة $1n4r^2 = 3$ هو:

$$a) \frac{e^{\frac{3}{2}}}{2}$$

(b)
$$\frac{e^{\frac{3}{2}}}{2}, \frac{-e^{\frac{3}{2}}}{2}$$
 (c) $\frac{e^{-\frac{3}{2}}}{2}$

$$\bigcirc \frac{e^{-\frac{3}{2}}}{2}$$

$$d e^{\frac{3}{2}}, -e^{\frac{3}{2}}$$

بالتعويض المباشر عن قيم X في مجال الدالة أو كما يلى

$$4 r^2 > 0 \implies t^2 > 0 \implies |r| > 0$$
 مجموعة التعويض $\ln 4 t^2 = 3$

 $\mathbb{R} - \{0\} = \text{tize}$

 $\ln 4 r^2 = 3 \implies \ln 2^2 r^2 = 3 \implies \ln(2r)^2 = 3 \implies 2\ln|2r| = 3$

$$\ln|2r| = \frac{3}{2} \implies |2r| = e^{\frac{3}{2}} \implies |\mathbf{r}| = \frac{e^{\frac{3}{2}}}{2} \implies r = \pm = \frac{e^{\frac{3}{2}}}{2}$$

 $e^{2x} = 10$ هو: حل المعادلة وا

$$x = \frac{\ln 10}{2}$$

$$\frac{5}{e}$$

 49^{Page}

$$e^{2x} = 10$$

بأخذ لو غاريتم الطرفين

$$\ln e^{2x} = \ln 10 \implies 2x = \ln 10 \implies x = \frac{\ln 10}{2}$$

هى مجموعة حل المعادلة؛ $\{e^2\}$

$$a ln x = 2$$

(b)
$$ln x^2 = 2$$

(c)
$$lnx^2 = 4$$
 (d) $lnx = 4$

(d)
$$lnx = 4$$

 $\ln x = 2 \implies x = e^2$

حول إلى الصورة الأسية

(12) حل المعادلة $e^{x+1} = 13$ هو:

$$b \quad x = \ln 13 + 1$$

(b)
$$x = \ln 13 - 1$$
 (c) $x = \ln 13$

(c)
$$x = ln 13$$

$$e^{x+1} = 13$$

بأخذ لو غاريتم الطرفين

$$\ln e^{x+1} = \ln 13 \implies x+1 = \ln 13 \implies x = \ln 13 - 1$$

(13) حل المعادلة
$$6 = \ln(x-2)^2$$
 هو:

$$(\mathbf{b}) 2 - e^3$$

$$2 \pm e^3$$

$$(\mathbf{d}) 2 \pm \mathbf{e}^6$$

$$\ln(x-2)^2 = 6 \implies 2 \ln|x-2| = 6 \implies \ln|x-2| = \frac{6}{2} = 3$$

 $|x-2| = e^3 \implies x-2 = \pm e^3 \implies x = 2 \pm e^3$

(14) حل المعادلة
$$8 = 8 + e^{2^{-1}} + 3 = 8$$
 هو:

(a)
$$x = 2 \ln 5 - 1$$

$$b \quad x = 2\ln 5 - 2$$

$$(c)$$
 $x = 2 \ln 4$

(a)
$$x = 2 \ln 5 - 1$$
 (b) $x = 2 \ln 5 - 2$ (c) $x = 2 \ln 4$ (d) $x = \frac{1}{2} (\ln 5 - 1)$

$$e^{\frac{x}{2}+1} + 3 = 8 \implies e^{\frac{x}{2}+1} = 8 - 3 = 5$$
 بأخذ لو غاريتم الطرفين

$$\ln e^{\frac{x}{2}+1} = 5 \implies \frac{x}{2}+1 = e^5 \implies \frac{x}{2} = e^5 - 1 \implies x = 2(e^5 - 1)$$

$$x = -2 + 2e^5 = 2e^5 - 2$$